План
1.   Океан, атмосфера и климат.
2.    Состав и свойства морской воды.
3.    Обитатели моря.
4.    Волны, приливы, течения.
5.    Рельеф дна.
6.    Ресурсы океана.

                                                      ОКЕАН, АТМОСФЕРА И КЛИМАТ
Океан (Мировой океан) — водная оболочка, покрывающая большую часть земной поверхности (четыре пятых в Южном полушарии и более трех пя­тых — в Северном). Лишь местами земная кора вздымается над поверхностью океана, образуя континенты, острова, атоллы и т. д. Хотя Мировой океан пред­ставляет собой единое целое, для удобства исследования отдельным его час­тям присвоены различные названия: Тихий, Атлантический, Индийский и Се­верный Ледовитый океаны. Наиболее крупные океаны — Тихий, Атлантичес­кий и Индийский.

Тихий океан (площадь около 178,62 млн км² ) имеет в плане округлую форму и занимает почти половину водной поверхности земного шара. Атлантический океан (91,56 млн км²) имеет форму широкой буквы 8, причем его западное и восточное побережья почти параллельны. Индийский океан пло­щадью 76,17 млн км² имеет форму треугольника. Северный Ледовитый океан площадью всего 14,75 млн км², почти со всех сторон окружен сушей. Как и Тихий, он имеет округлую в плане форму. Некоторые географы выделяют еще один океан — Антарктический, или Южный, — водное пространство, окружающее Антарктиду. Мировой океан, средняя глубина которого составляет около 4 км, содержит 1350 млн м³ воды. Атмосфера, окутывающая всю Зем­лю; слоем толщиной в несколько сотен километров, с гораздо большим осно­ванием, чем Мировой океан, может рассматриваться как «оболочка». И океан, и атмосфера представляют собой текучие среды, в которых существует жизнь; их свойства определяют среду обитания организмов. Циркуляционные пото­ки в атмосфере влияют на общую циркуляцию волн в океанах, а от состава и температуры воздуха в сильной степени зависят свойства океанических вод.
В свою очередь, океан определяет основные свойства атмосферы и является источником энергии для многих протекающих в атмосфере процессов. На циркуляцию поды в океане влияют ветры, вращение Земли и барьеры суши. Известно, что температурный режим и другие климатические характеристики местности на любой широте могут существенно изменяться по направлению от побережья океана в глубь материка. По сравнению с сушей океан медлен­нее нагревается летом и медленнее остывает зимой, сглаживая колебания тем­пературы на прилегающей суше. Атмосфера получает от океана значительную часть поступающего к ней тепла и почти весь водяной пар. Пар поднимается, конденсируется, образуя облака, которые переносятся ветрами и поддерживают жизнь на планете, проливаясь в виде дождя или снега. Однако в тепло и влагообмене участвуют только поверхностные воды; более 95 % воды нахо­дится в глубинах, где ее температура остается практически неизменной.
                                                СОСТАВ И СВОЙСТВА МОРСКОЙ ВОДЫ
Вода в океане соленая. Соленый вкус придают содержащиеся в ней 3,5 % растворенных минеральных веществ — главным образом соединения натрия и хлора — основные ингредиенты столовой соли. Следующим по количеству является магний, за ним идет сера; присутствуют также все обычные металлы. Из неметаллических компонентов особенно важны кальций и кремний, так как именно они участвуют в строении скелетов и раковин многих морских животных. Благодаря тому что вода в океане постоянно перемешивается волнами и течениями, ее состав почти одинаков во всех океанах. Плотность морской воды (при температуре 20 °С и солености около 3,5 %о) примерно 1,03, т. е. несколько выше, чем плотность пресной воды (1,0). Плотность воды в океане меняется с глубиной из-за давления вышележащих слоев, а также в зависимости от температуры и солености. В наиболее глубоких частях океана воды обычно солонее и холоднее.
Наиболее плотные массы воды в океане могут оставаться на глубине и сохранять пониженную температуру более 1000 лет. Поскольку морская вода имеет низкую вязкость и высокое поверхностное натяжение, она оказывает относительно слабое сопротивление движению корабля или пловца и быстро стекает с различных поверхностей. Преобладающая синяя окраска морской воды связана с рассеянием солнечных лучей взвешенными в воде мелкими частица¬ми. Морская вода гораздо менее прозрачна для видимого света по сравнению с воздухом, но более прозрачна по сравнению с большинством других веществ. Зарегистрировано проникновение солнечных лучей в океан до глубины 700 м. Радиоволны проникают в толщу воды лишь на небольшую глубину, зато звуковые волны могут распространяться под водой на тысячи километров. Скорость распространения звука в морской воде колеблется, составляя в среднем 1500 м в секунду. Электропроводность морской воды примерно в 4000 раз выше, чем электропроводность пресной воды. Высокое содержание солей препятствует ее использованию для орошения и полива сельскохозяйственных культур. Для питья она также непригодна.
ВОЛНЫ, ПРИЛИВЫ, ТЕЧЕНИЯ
Жизнь в океане необычайно разнообразна — там обитает более 200 тыс. видов организмов. Некоторые из них, например кистеперая рыба целакант, предавляют собой живые ископаемые, предки которых процветали здесь более 300 млн лет назад; другие появились совсем недавно. Большая часть морских организмов встречается на мелководье, куда проникает солнечный свет, способствующий процессу фотосинтеза. Благоприятны для жизни зоны, обогащенные кислородом и питательными веществами, например нитратами. Широко известно такое явление, как «апвеллинг»(англ. upwelling), — поднятие к поверхности глубинных морских вод, обогащенных питательными веществами; именно с ним связано богатство органической жизни у некоторых побережий. Жизнь в океане представлена самыми различными организмами — от микроскопических одноклеточных водорослей и крошечных животных до китов, превышающих в длину 30 м и превосходящих по размерам любое животное, жившее когда-либо на суше, включая самых крупных динозавров. Океаническая биота делится на следующие основные группы. Планктон представляет собой массу микроскопических растений и животных, не способных к самостоятельному передвижению и обитающих в приповерхностных хорошо освещенных слоях воды, где они образуют плавучие «кормовые угодья» для более крупных животных. Планктон состоит из фитопланктона (включающего такие растения, как диатомовые водоросли) и зоопланктона (медузы, криль, личинки крабов и пр.). Нектон состоит из свободно плавающих в толще воды организмов, преимущественно хищных, и включает более 20 тыс. разновидностей рыб, а также кальмаров, тюленей, морских львов, китов. Бентос состоит из животных и растений, обитающих на дне океана или вблизи него, как на больших глубинах, так и на мелководье. Растения, представленные различными водорослями (например, бурыми), встречаются на мелководье, куда проникает солнечный свет. Из животных следует отметить губок, морских лилий (одно время считавшихся вымершими), плеченогих и др. Более 90 % органических веществ, составляющих основу жизни в море, синтезируется при солнечном освещении из минеральных веществ и других компонентов фитопланктоном, в изобилии населяющим верхние слои водной толщи п океане. Некоторые организмы, входящие в состав зоопланктона, поедают эти растения и в свою очередь являются источником пищи для более крупных животных, обитающих на большей глубине. Тех поедают более крупные животные, живущие еще глубже, и такая закономерность прослеживается до самого дна океана, где наиболее крупные беспозвоночные, например стеклянные губки, получают необходимые им питательные вещества из остатков отмерших организмов — органического детрита, опускающегося на дно из вышележащей толщи воды. Однако известно, что множество рыб и другие свободно передвигающиеся животные сумели приспособиться к экстремальным условиям высокого давления, низкой температуры и постоянной темноты, характерных дли больших глубин.

                                                               ВОЛНЫ,ПРИЛИВЫ,ТЕЧЕНИЯ
Как и вся Вселенная, океан никогда не остается в покое. Разнообразные природные процессы, в том числе такие катастрофические, как подводные землетрясения или извержения вулканов, вызывают движения океанических вод. Обычные волны вызываются ветром, дующим с переменной скоростью над поверхностью океана. Сначала возникает рябь, затем поверхность воды начинает ритмично подниматься и опускаться. Хотя водная поверхность при этом вздымается и опускается, отдельные частицы воды движутся по траектории, представляющей собой почти замкнутый круг, практически не испытывая смещения по горизонтали. По мере усиления ветра волны становятся выше. В открытом море высота гребня волны может достигать 30 м, а расстояние между соседними гребнями — 300 м. Подходя к берегу, волны образуют буруны двух типов ныряющие и скользящие. Ныряющие буруны характерны для волн, зародившихся в удалении от берега; они имеют вогнутый фронт, их гребень нависает и обрушивается, как водопад. Скользящие буруны не образуют вогнутого фронта, и снижение волны происходит постепенно. В обоих случаях волна накатывается на берег, а затем откатывается обратно.
Катастрофические волны могут возникать в результате резкого изменения глубины морского дна при образовании сбросов (цунами), при сильных штормах и ураганах (штормовые волны) или при обвалах и оползнях береговых обрывов. Цунами могут распространяться в открытом океане со скоростью до 700-800 км/ч. При приближении к берегу волна цунами тормозится, одновременно увеличивается ее высота. В результате на берег накатывается волна высотой до 30 м и более (относительно среднего уровня океана). Цунами обладают огромной разрушительной силой. Хотя больше всего от них страдают районы, находящиеся вблизи таких сейсмически активных зон, как Аляска, Япония, Чили, волны, приходящие от удаленных источников, могут причинить значительный ущерб. Подобные волны возникают при взрывных извержениях вулканов или обрушении стенок кратеров, как, например, при извержении вулкана на о. Кракатау в Индонезии в 1883 г. Еще более разрушительными могут быть штормовые волны, порожденные ураганами (тропическими циклонами). Неоднократно подобные волны обрушивались на побережье в вершинной части Бенгальского залива; одна из них в 1737 г. привела к гибели примерно 300 тыс. человек. Сейчас благодаря значительно усовершенствованной системе раннего оповещения имеется возможность заранее предупреждать население прибрежных городов о приближающихся ураганах. Катастрофические волны, вызванные оползнями и обвалами, относительно редки. Они возникают в результате падения крупных блоков породы в глубоководные заливы; при этом происходит вытеснение огромной массы воды, которая обрушивается на берег. В 1796 г на о. Кюсю в Японии сошел оползень, имевший трагические последствия: порожденные им три огромные волны унесли жизни около 15 тыс. человек.
На берега океана накатываются приливы, в результате чего уровень воды поднимается на высоту 15 м и более. Основной причиной приливов на поверхности Земли является притяжение Луны. В течение каждых 24 ч 52 мин происходят два прилива и два отлива . Хотя эти колебания уровня заметны только у берегов и на отмелях, известно, что они проявляются и в открытом море. Приливами обусловлены многие очень сильные течения в прибрежной зоне, поэтому для безопасной навигации морякам необходимо пользоваться специальными таблицами течений. В проливах, соединяющих Внутреннее море Японии с открытым океаном, приливно-отливные течения достигают скорости 20 км/ч, а в проливе Симор Нарроус у берегов Британской Колумбии (о. Ванкувер) в Канаде зарегестрирована скорость около 30 км/ч.
Течения в океане могут также создаваться волнением. Прибрежные волны, подходящие к берегу под углом, вызывают относительно медленные вдоль береговые течения. Там, где течение отклоняется от берега, его скорость резко возрастает — образуется разрывное течение, которое может представлять опасность для пловцов. Вращение Земли заставляет крупные океанические течения двигаться по часовой стрелке в Северном полушарии и против часовой стрелки — в Южном. С некоторыми течениями связаны самые богатые рыболовные угодья, например, в районе Лабрадорского течения у восточных берегов Север¬ной Америки и Перуанского течения (или Гумбольдта) у берегов Перу и Чили. Мутьевые течения относятся к наиболее сильным течениям в океане. Они вызываются перемещением большого объема взвешенных наносов; эти наносы могут быть принесены реками, явиться результатом волнения на мелководье или образоваться при сходе оползня по подводному склону. Идеальные условия для зарождения таких течений существуют в вершинах подводных каньонов, расположенных вблизи берега, особенно при впадении рек. Такие течения развивают скорость от 1,5 до 10 км/ч и временами повреждают подводные кабели. После землетрясения 1929 г. с эпицентром в районе Большой Ньюфаундлендской банки многие трансатлантические кабели, соединявшие Северную Европу и США, оказались поврежденными, вероятно, вследствие сильных мутьевых течений.

                                                                        РЕЛЬЕФ ДНА

На дне океанов находятся огромные горные хребты, глубокие расселины с обрывистыми стенками, протяженные гряды и глубокие рифтовые долины. Морское дно не менее изрезано, чем поверхность суши. Платформа, окаймляющая континенты и называемая материковой отмелью, или шельфом, не столь ровная, как это когда-то считалось. На внешней части шельфа обычны скальные выступы; коренные породы часто выходят и на примыкающей к шельфу части материкового склона. Средняя глубина внешнего края (бровки) шельфа, отделяющего его от материкового склона, составляет около 130 м. У берегов, подвергавшихся оледенению, на шельфе часто отмечаются ложбины (троги) и впадины. Так у у фьордовых берегов Норвегии, Аляски, Южного Чили глубоководные участки обнаруживаются вблизи современной береговой линии; глубоководные ложбины существуют у берегов штата Мэн и в заливе Св. Лаврентия. Выработанные ледниками троги часто тянутся поперек всего шельфа; местами вдоль них располагаются исключительно богатые рыбой отмели, например банки Джорджес или Большая Ньюфаундлендская. Шельфы у берегов, где оледенения не было, имеют более однообразное строение, однако и на них часто встречаются песчаные или даже скальные гряды, возвышающиеся над общим уровнем. В ледниковую эпоху, когда уровень океана понизился вследствие того, что огромные массы воды аккумулировались на суше в виде ледниковых покровов, во многих местах нынешнего шельфа были созданы речные дельты. В других местах на окраинах материков на отметках тогдашнего уровня моря в поверхность были врезаны абразионные платформы.
Однако результаты этих процессов, протекавших в условиях низкого положения уровня Мирового океана, были существенно преобразованы тектоническими движениями и осадконакоплением в последующую послеледниковую эпоху. Удивительнее всего то, что во многих местах на внешнем шельфе все-таки можно обнаружить отложения, образовавшиеся в прошлом, когда уровень океана был более чем на 100 м ниже современного. Там же находят кости мамонтов, живших в ледниковую эпоху, а иногда и орудия первобытного человека. Говоря о материковом склоне, необходимо отметить следующие особенности: во-первых, он обычно образует четкую и хорошо выраженную границу с шельфом; во- вторых, почти всегда его пересекают глубокие подводные каньоны. Средний угол наклона на материковом склоне составляет 4°, но встречаются и более крутые, иногда почти вертикальные участки.
У нижней границы склона в Атлантическом и Индийском океанах располагается пологонаклонная поверхность, получившая название материкового подножия. По периферии Тихого океана материковое подножие обычно отсутствует; его часто замещают глубоководные желоба, где тектонические подвижки (сбросы) порождают землетрясения и где зарождается большинство цунами. Подводные каньоны, врезанные в морское дно на 300 м и более, обычно отличаются крутыми бортами, узким днищем, извилистостью в плане; как и их аналоги на суше, они принимают многочисленные притоки. Самый глубокий из известных подводных каньонов — Большой Багамский — врезан почти на 5 км. Несмотря на сходство с одноименными образованиями на суше, подводные каньоны в своем большинстве не являются древними речными долинами, погруженными ниже уровня океана. Мутьевые течения вполне способны как выработать доли¬ну на дне океана, так и углубить и преобразовать затопленную речную долину или понижение по линии сброса. Подводные долины не остаются неизменными; по ним осуществляется транспорт наносов, о чем свидетельствуют знаки ряби на дне, и глубина их постоянно меняется. Многое стало известно о рельефе глубоководных частей океанического дна в результате широкомасштабных исследований, развернувшихся после Второй мировой войны. Наибольшие глубины приурочены к глубоководным желобам Тихого океана. Самая глубокая точка — т. н. пучина Челленджера — находится в пределах Марианского желоба на юго-западе Тихого океана. Ниже приводятся наибольшие глубины океанов с указанием их названий и местоположения:
Северный Ледовитый — 5527 м в Гренландском море;
Атлантический — желоб Пуэрто-Рико (у берегов Пуэрто-Рико) 8742 м;
Индийский- Зондский (Яванский) желоб (к западу от Зондского архипелага- 7729 м;
Тихий Марианский желоб (у Марианских островов) —11 033 м;
– желоб Тонга (у Новой Зеландии) — 10 882 м;
Филиппинский желоб (у Филиппинских островов) — 10 497 м.
Большим подводным хребтом является Срединно-Атлантический хребет, протянувшийся с севера на юг через центральную часть Атлантического океана. Его протяженность почти 60 тыс. км, одно из его ответвлений тянется в Аденский залив к Красному морю, а другое заканчивается у берегов Калифорнийского залива. Ширина хребта составляет сотни километров; наиболее поразительную его черту представляют рифтовые долины, прослеживающиеся почти на всем его протяжении и напоминающие Восточно-Африканскую рифтовую зону. Еще более удивительным открытием явилось то, что основной хребет пересекают под прямым углом к его оси многочисленные гребни и ложбины. Эти поперечные гребни прослеживаются в океане на протяжении тысяч километров. В местах пересечения их с осевым хребтом находятся т. н. зоны разломов, к которым приурочены активные тектонические подвижки и где находятся центры крупных землетрясений.
Гипотеза дрейфа материков А. Вегенера. Примерно до 1865 г. большинство геологов полагало, что положение и очертания материков и океанических бассейнов остаются неизменными. Существовало довольно смутное представление о том, что Земля сжимается, и это сжатие приводит к образованию складчатых горных хребтов. Когда в 1912 г. немецкий метеоролог Альфред Вегенер высказал идею о том, что материки перемещаются («дрейфуют») и что Атлантический океан образовался в процессе расширения трещины, расколовшей древний супер континент, эта идея была встречена с недоверием, несмотря на множество фактов, свидетельствующих в ее пользу (сходство очертаний восточного и западного побережий Атлантического океана; сходство ископаемых остатков в Африке и Южной Америке; следы великих оледенений каменноугольного и пермского периодов в интервале 350-230 млн лет назад в районах, ныне расположенных вблизи экватора). Постепенно доводы Вегенера были подкреплены результатами дальнейших исследований. Было высказано предположение о том, что рифтовые долины в пределах срединно-океанических хребтов возникают как трещины растяжения, которые затем заполняются поднимающейся из глубин магмой. Материки и примыкающие к ним участки океанов образуют огромные плиты, движущиеся в стороны от подводных хребтов. Фронтальная часть Американской плиты надвигается на Тихоокеанскую плиту; последняя в свою очередь поддвигается под материк — происходит процесс, называемый субдукцией. Есть множество других свидетельств в пользу этой теории: например, приуроченность к этим районам центров землетрясений, краевых глубоководных желобов, горных цепей и вулканов. Эта теория позволяет объяснить почти все крупные формы рельефа материков и океанических бассейнов.
Магнитные аномалии. Наиболее убедительным доводом в пользу гипотезы разрастания океанического дна является чередование полос прямой и обратной полярности (положительных и отрицательных магнитных аномалий), прослеживающихся симметрично по обе стороны от срединно-океанических хребтов и следующих параллельно их оси. Изучение этих аномалий позволило установить, что среди океанов происходит в среднем со скоростью несколько сантиметров в год.
Тектоника плит. Еще одно доказательство вероятности этой гипотезы было получено с помощью глубоководного бурения. Если, как следует из данных по исторической геологии, разрастание океанов началось в юрском периоде, ни одна часть Атлантического океана не может быть старше этого времени. Глубоководными буровыми скважинами в некоторых местах были пройдены отложения юрского возраста (образовавшиеся 190-135 млн лет назад), по нигде не встречены более древние. Это обстоятельство может считаться весомым доказательством; в то же время из него следует парадоксальный вывод о том, что дно океана моложе, чем сам океан.
 РЕСУРСЫ ОКЕАНА
По мере того как ресурсы планеты все с большим трудом удовлетворяют потребности растущего населения, океан приобретает особое значение как ис-точник пищи, энергии, минерального сырья и воды.
Пищевые ресурсы океана. В океанах ежегодно вылавливаются десятки мил-лионов тонн рыбы, моллюсков и ракообразных. В некоторых частях океанов добыча с применением современных плавучих рыбозаводов ведется очень интенсивно. Почти полностью истреблены некоторые виды китов. Продолжа-ющийся интенсивный вылов может нанести сильный ущерб таким ценным промысловым видам рыбы, как тунец, сельдь, треска, морской окунь, сардина, мерлуза.
Рыбоводство. Для разведения рыбы можно было бы выделить обширные участки шельфа. При этом можно удобрять морское дно, чтобы обеспечить рост морских растений, которыми питается рыба.
Минеральные ресурсы океанов. Все минералы, которые находят на суше, присутствуют и в морской воде. Наиболее распространены там соли, магний, сера, кальций, калий, бром. Недавно океанологи обнаружили, что во многих местах дно океана буквально покрыто россыпью железомарганцевых конкре¬ций с высоким содержанием марганца, никеля и кобальта. Найденные на мелко¬водье фосфоритные конкреции могут использоваться в качестве сырья для про¬изводства удобрений. В морской воде присутствуют также такие ценные метал¬лы, как титан, серебро и золото. В настоящее время в значительных количествах из морской воды добываются лишь соль, магний и бром.
Нефть. На шельфе уже сейчас разрабатывается ряд крупных месторожде¬ний нефти, например у берегов Техаса и Луизианы, в Северном море, Персид¬ском заливе и у берегов Китая. Ведется разведка месторождений во многих других районах, например у берегов Западной Африки, у восточного побе¬режья США и Мексики, у берегов арктической Канады и Аляски, Венесуэлы и Бразилии.

(I’., .ш и( точник энергии. Океан является практически неистощимым ис- ннником энергии.
. Ьк’р.’ия приливов. Уже давно было известно, что приливные течения, прохо нищие через узкие проливы, можно использовать для получения энергии в та¬кой же степени, как водопады и плотины на реках. Так, например, в Сен-Мало во Франции с 1966 г. успешно действует приливная гидроэлектростанция.
Энергия волн также может использоваться для получения электроэнергии.
Энергия термического градиента. Почти три четверти солнечной энергии, поступающей на Землю, приходится на океаны, поэтому океан является идеальным гигантским накопителем тепла. Получение энергии, основанное на использовании разности температур поверхностных и глубинных слоев океана, могло бы проводиться на крупных плавучих электростанциях. В настоящее время разработка таких систем находится в экспериментальной стадии. К другим ресурсам океана можно отнести жемчуг, который образуется в теле некоторых моллюсков; губки; водоросли, использующиеся в качестве удобрений, пищевых продуктов и пищевых добавок, а также в медицине как источник йода, натрия и калия; залежи гуано — птичьего помета, добываемого на некоторых атоллах в Тихом океане и используемого в качестве удобрения. Наконец, опреснение позволяет получить из морской воды пресную.